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ABSTRACT 

A differential method of orbit improvement utilizing observational 
data is presented for Vinti's spheroidal solution of the dynamical 
problem of unretarded artificial satellite motion about an oblate planet, 
recently modified so as to permit the exact inclusion of the effects of 
the third zonal harmonic term of the planet's gravitational potential 
field. The first-order Taylor's series expansion used for the equations 
of condition is fitted to observationalvalues by an' iterated least-squares 
process, producing successively smaller corrections to the orbital 
elements. A mean set of elements, conditioned by the observations, re­
sults for use in orbital predictions for intermediate time points or  for 
later epochs. The differential coefficients in the conditional equations, 
applicable to any type of observational data, are derived analytically 
from the equations of the accurate reference orbit. The method of dif­
ferential correction may be used for orbits of all inclinations, including 
equatorial and polar; both a first-order treatment and a lengthier, but 
more exact, second-order treatment for the periodic variables are 
given. 
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DIFFERENTIAL CORRECTIONS APPLIED TO VINTI'S 
ACCURATE REFERENCE SATELLITE ORBIT WITH INCLUSION 

OF THE THIRD ZONAL HARMONIC 

by 
Harvey Walden and Stan Watson 

Goddard Space Flight Center 

INTRODUCTION 

In order to predict the precise position, at a given time, of a satellite revolving about a planet, 
an extensive mathematical theory of the satellite's motion and the exact values of certain physical 
parameters (e.g., gravitational constants) are required. If the position of an artificial satellite of 
the earth is to be determined relative to an observer on the earth's surface, then, in addition, the 
accurate geodetic position of the observer is necessary. Any mathematical theory of motion is 
based upon certain constants of the motion which initially must be determined empirically. Once 
approximate values for these constants of the motion are available, then they may be utilized in the 
theory to predict future orbital positions of the satellite. A comparison between the positions pre­
dicted by the theory and those actually observed will indicate discrepancies, expressed numerically 
as the differences between the observed positions and the respective computed positions. These 
differences are known as observational residuals, and the fact that they are nonzero is due to 
several causes. One fundamental cause which unfortunately is ever present is the inadequacy of 
the theory, in that it is unable to account mathematically for all of the physical forces acting upon 
the satellite. Moreover, there are always e r ro r s  associated with the observations themselves, be­
cause of fluctuations in the atmospheric density, optical imperfections in the telescope, inaccura­
cies in the reduction of the observational recordings, and the like. Further, the physical parameters 
required by the theory often are not known with sufficient precision, and the geodetic position of the 
observer likewise may be measured inaccurately. Finally, there are e r ro r s  introduced by the 
approximate values for the constants of the motion used in computing the theoretical position. 

Despite all of the inadequacies and shortcomings enumerated, the very existence of the dis­
crepancies between theory and observation provides a means of improving the approximate values 
of the constants of the motion. One procedure for improving these constants in an analytic theory 
of motion involves expressing the incremental changes in the positional coordinates due to  changes 
in the constants of the motion as coefficients having the form of partial derivatives in a Taylor's 
series expansion. In such a case, the partial derivatives must be determined as explicit functions 
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of variables which arise in the analytic theory of motion. This method of orbit improvement 
is known as differential correction. 

The purpose of this paper is to provide such an orbit improvement method for the spheroidal 
theory of artificial satellite motion. The spheroidal method for satellite orbits, developed by Vinti 
(References 1 through 5), supplies a procedure for calculating an accurate reference orbit of any 
drag-free satellite moving in the gravitational field of an axially symmetrical oblate planet. In 
the case of artificial satellites of the earth, the intermediary reference orbit reproduces exactly 
the zeroth and second zonal harmonic coefficients in the series expansion of the geopotential func­
tion, and also accounts for more than half of the fourth zonal harmonic. Recently, Vinti (Refer­
ences 6 and 7) has modified the spheroidal potential to allow exact inclusion of the effects of the 
third zonal harmonic as well, heretofore the major neglected effect in the spheroidal orbital theory. 
(The first zonal harmonic is eliminated entirely, of course, by proper choice of coordinate origin.) 
Accounting for the third zonal harmonic directly in the intermediary orbit in this manner affords a 
more accurate treatment (Reference 8) than would be possible through perturbation theory. This 
paper will present a differential method of orbit improvement based upon the modified spheroidal 
theory that includes the effects of the third zonal harmonic term. 

FUNDAMENTAL EQUATIONS FOR DIFFERENTIAL CORRECTION 

Consider a system of constants of the motion qi (i = 1, 2, ..., n )  which a re  utilized in a math­
ematical theory of motion to predict orbital positions of a satellite. In this context, such constants 
of the motion are generally referred to as orbital elements, and the number n contained in the 
system is often 6. Denote a positional coordinate of the satellite at time t by R( t ) ,using sub­
scripts f ' ~ f 'and " c "  to distinguish between observed values and values computed by the analytical 
theory using the orbital elements. We assume that the differences of the coordinates, R,( t ) - Rc(t ) , 
as well as the required corrections to the elements in the improvement of the orbit, are sufficiently 
small so that their squares and higher powers may be neglected. We can then express the obser­
vational residuals by a truncated Taylor's ser ies  expansion restricted to first powers in the general 
form 

dq,R, (t) - Rc (t) = *'qi ' 

i=l 

Here the computed value Rc(t) is viewed as a function of n independent variables, q,(i = 1,2,>.-,n), 

which are to be improved by the additive increments Aq, ( i  = 1, 2, - ,n ). The coefficients in the 
Taylor's expansion expressing the increment of the coordinates caused by a change in the orbital 
elements have the form of partial derivatives, and these must be determined analytically from the 
equations in the mathematical theory of motion. Each separately observed coordinate yields an 
equation for  corrections of the elements of the form given earlier. Ordinarily, the available number 
of such so-called equations of condition far exceeds the number n of unknowns Aq,. This set  of 
linear simultaneous equations forms an inconsistent system (because of inherent random, and 
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possibly systematic, e r ro r s  in the observations) for which no exact solution exists. It may be 
solved by the method of least squares, yielding "preferred" values for the unknowns. The solution 
of the equations by the principle of least squares follows well-known schemes (Reference 9), so 
that the problem reduces to evaluating the derivatives of the coordinates with respect to the 
elements (the so-called differential coefficients). 

We now introduce certain conventions in order to allow discussion of the problem in more 
explicit terms. Assume that the satellite's positional data are recorded at the tracking stations in 
the form of direction cosines observed with respect to a topocentric (i.e., situated at the earth's 
surface) coordinate system. The topocentric o r  'local" coordinates will be distinguished by the 
subscript, "M". The system is orthogonal and right-handed, with the X, - Y, plane tangent to the 
earth's surface. The %-axis extends in an easterly direction along the line of latitude; the Y,-axis  
extends in a northerly direction along the line of longitude, and the z,-axis is normal to the surface 
and points toward the geodetic zenith. If L~ and hio denote the observed direction cosines of a 
satellite (in the X,- and Y,-directions, respectively) for a given time of observation, then the 
corresponding computed values of the direction cosines a re  given in terms of the local coordinates 
by 

The computed value of the third direction cosine, N~ (in the 2,-direction), is not an independent 
parameter, but is predetermined by Lc and Mc through the relationship 

For this reason, each satellite. observation provides two, and only two, independent coordinate 
values, which here a re  chosen to be L~ and M ~ .  

The mathematical theory of motion will ordinarily predict a satellite's position with respect 
to a rectangular geocentric system (x,Y ,2 )  of coordinates, the so-called inertial frame of refer­
ence. In this system, the x - Y plane is the earth's equatorial plane, and the origin is situated at 
the earth's center of mass. The x-axis extends toward the vernal equinox (the first  point of Aries); 
the Y - a x i s  is orthogonally to the east to form a right-handed system, and the Z - a x i s  coincides with 
the earth's polar axis. In order to obtain a satellite's local coordinates from its inertial coordi­
nates, the inertial coordinates of the observation point at the time of observation, which we shall 
denote (x,, Y, ,2,) ,must be known and two rotations performed to bring the local and inertial 
systems into parallel alignment. Let us denote by $x the angle between the vernal equinox and the 
x,-axis as measured in the observation latitude plane. Then $x will depend upon the longitude of 
the tracking station and the hour angle of the vernal equinox at the time of observation. If e, repre­
sents the latitude of the tracking station, then the local coordinates of the satellite at observation 
time are given by the matriX equation 
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1 0 O l

I0 s i n e D  cos8, 

9 -cosBD 
-_ 

The difference of column matrices on the extreme right represents a translation from the earth's 
center to the tracking station position; the center matrix on the right represents a rotation in the 
latitude plane about the polar axis through an angle $, to bring the inertial x-axis into coincidence 
with the station's X,-axis; the remaining matrix on the right represents a rotation in the longitude 
plane about the x, -axis through an angle equal to the complement of 8, to bring the inertial z-axis 
into coincidence with the station's Z, -axis. This matrix equation, when expanded, reads 

X, = (x-x,) cos+, + (Y-Y,) s in+x  , 

Y, = - (X-XT; s in+x  s i n e D  + cos+^ s i n e D  + (z-~,)cos~, , 

and 

= Z, (x-x,) s i n + x  coseD - ( Y  -Y,) cos+, cosoD + (z-z,) s i n e D  

We can now write the first-order Taylor's series expansion for the equations of condition 
corresponding to each time of observation in the following more explicit form: 

and 

Since the local coordinates are functions of the inertial coordinates, which are in turn functions 
of the orbital elements, then the chain rule may be used to expand the differential coefficients. Thus 

aLc a~~ ax, aLc dy, dLc az, 
_ _ _  + - - + - - ,dq, = ax, dq, dY, dqi dZ, dqi 

and 
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The partial derivatives of the direction cosines with respect to the local coordinates are found 
directly from the expressions for L c  and M e .  Thus 

and 

Since the coordinates X,, Y,, and Z, and-the angles $Jx and 8, are independent of the orbital ele­
ments (and merely geodesic functions), we .have the matrix equation 

- ­

1 0 0 

D s ine ,  C O S B ~  

0 - COS 8, s i n  8, 0 0 
- - -

Equivalently, 
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ax  dYay, - - sin $Jx sin e, aqi + cos $Jx sin8, aqi ' cos 
a z  ' 'D


aqi 

and 

a% ax  a zaqi - sin $x cos e, - cos $Jx cos e, + sin e, aqi * 

The problem remains to evaluate the differential coefficients ax/aqi ,aY/aq,, and aZ/aqi (i = 1, 2, 
. . . ,6), which are the derivatives of the inertial coordinates with respect to the orbital elements. 
At this point, the mathematical theory of motion becomes of primary importance. 

METHOD USED TO EVALUATE DIFFERENTIAL COEFFICIENTS 

The constants of the motion qi (i = 1, 2, . . . , 6), which we choose for the mean orbital 
elements for the modified spheroidal theory of satellite motion (including the exact effects of the 
third zonal harmonic coefficient of the oblate planet's gravitational field) a re  the following: 

q1 = a, the semimajor axis; 

q, = e, the eccentricity; 

q, = s, corresponding to sin2 I in Keplerian motion, where I is the inclination of the orbital 
plane to the equator. (However, S may be negative for orbits sufficiently close to equatorial. For 
a polar orbit, S is unity, and in all cases, S2 5 1.); 

q4 = p, ,corresponding to the negative of the time of passage through pericenter in Keplerian 
motion; 

9, = p, ,corresponding to the argument of pericenter in Keplerian motion; and 

q, = p,, corresponding to the right ascension of the ascending ndde in Keplerian motion. 

These elements differ slightly from those selected by Vinti in the final algorithm for the reference 
orbit (Reference 7, Section 12), but the foregoing parameters seem more suitable for the differen­
tial correction. 

The relationship between rectangular inertial coordinates and oblate spheroidal coordinates 
p, 7,  and 4, which are  involved in the solution of the problem of satellite motion, is given by 
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and 

z = p r ) - 6 ,  ( - 1 L q S l )  . 

' Here c and 6 are adjustable parameters that a re  chosen to agree with the coefficients of the zonal 
harmonics in the ser ies  expansion of the earth's potential function. In terms of the earth's equa­
torial radius re and the nth zonal harmonic coefficient J,, the proper choices are 

For the earth, the values a re  c 2 210 km and S 2 7 km. 

In order to evaluate the derivatives of the inertial coordinates with respect to the orbital 
elements, we must know ap/aq,, d d a q , ,  and a4/aqi (i = '1, 2, s - w ,6). The oblate spheroidal co­
ordinates are rather involved functions of the orbital elements. The process for determining the 
partial derivatives of p ,77, and 4 is a lengthy one which will be presented in a synthetic, rather 
than analytic, manner. That is, necessary partial derivatives of the simpler functions of the orbital 
elements will be given first, followed by partial derivatives of more complicated functions of the 
elements involving the predetermined partial derivatives. 

It is worth noting in passing that the equations to be presented herein apply to orbits of all 
inclinations, including equatorial. There a re  no special simplifications introduced in the case of 
equatorial o r  near-equatorial inclinations, as there were for the spheroidal theory that did not 
include the effects of the third zonal harmonic (Reference 5). 

However, as in the earlier spheroidal theory, tfie differential correction may include derivatives 
of the periodic terms taken through the second order, or, alternatively, it may be simplified to 
omit periodic terms higher than first order. In either case, some second-order effects a re  in­
cluded with the first-order terms and even with the zeroth-order terms. The terms of second and 
higher orders that are to be omitted in the simplified version will  be indicated as such. 

TIME-INDEPENDENT PARTIAL DERIVATIVES IN THE DIFFERENTIAL CORRECTION 

We begin with Equation 23.3,* which reads 

p = a ( l - e 2 )  . 

*Until otherwise indicated, all equation numbers used in specifying the defining relation for a given variable refer to Reference 7. 
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Thus, 

and 

-;; = 0 .  

Since b, = -A/2, by line 8 of Section 12, Reference 7, then by Equation 40.1 we find 

If we denote the numerator and denominator of b, by N and D respectively, then we have 

Since b, = fi, by line 8 of Section 12,Reference 7, then by Equation 40.2 we find 
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b: = cz  - b, (ap- c') . 

Thus 

ab2 ab 
= (abz)-' [ (ap-c2) (b ,a - ' -&)  - b , ( p + a % ) ]  

aeab2 = - I.b - 1  [a-l ( a p - c 2 )  
ab, 

+ b, a]__ 2 2 

and 

This last sequence of three equations can be written as a single generalized equation if we intro­
duce the following notation. Let q1 = a ,  q, = e,  and q, = S ,  and let S i j  be the Kronecker delta, 
defined as follows: S i j  = 1 when i = j ,  and S i j  = 0 whenever i # j . Then, for i = 1, 2, 3, 

This notation will be used extensively in order to write later sequences of equations in an efficient 
manner. 

Combining Equations 35.1 and 35.2 with equations already mentioned gives 

Thus 

and 
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This may be written in the generalized form, for i = 1, 2, 3, 

From Equation 21.2, 

Thus, for i = 1, 2, 3, 

For convenience in later equations, we now differentiate the inverse of a. po = (a t b l )  po 

to find, for i = 1, 2, 3, 

From Equations 31.1 and 31.2, neglecting terms of fourth order, 

( $ ) 2 ( 1 - s )  (1- wos)c2  
C 2  

1 - l + -
a. Po 

( 1 - S )  + 
C 2  

[ I + =  ( 1 - 2 s )1' 
Now, for i = 1, 2 only, 
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However, 

a u  2 
PO 

- 2  

- 3  

- 2c2 (SJ ( 1  - S) (1 -

By Equation 32.1, 

C 2c, = -u .
a0 Po 

Thus, for i = 1, 2, 3, 

ac2 - a c2 au . 
aq,  ~ ' U Tqi ( a o ~ o ) - l+=ox 

Combining Equations 32.1 and 32.2 gives 

26c, = - u ( 1 - c 2 ) ( 1 - c 2 s ) - 1
PO 

Thus, for i = 1, 2, 3, 

ac1 26-ai = -
PO 

( 1 - c 2 s ) - 1 { ( 1 - c 2 ) ( ~  

Combining Equations 32.1 and 32.3 gives 

6
P u ( l - S )  (l-c2s)-1. 

. 

-63 i ( l - c2 )c2  

= -
Po 

Thus, for i = 1, 2, 3, 

6 
. aqi+ u - l - aul- 6,i ( 1 - c 2 s ) - 1  p0 u . 
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Equation 21.1 may be rewritten as 

1 
al = - 2 p ( a + b l ) - '  . 

Thus, for i = 1, 2, 3, 

For convenience in later equations, we now evaluate, for i = 1, 2, 3, 

and 

Equation 5.31* gives 

Here, and in the following, Pn (x )  is the Legendre polynomial with argument x of degree n. The 
definition of R is given by Equation 5.28, viz., R~ ( x )  = xn Pn ( l / ~ ) ,where 0 < x 51. We shall de­
note by Pn' (x )  the derivative of the Legendre polynomial with respect to the argument. Then, for 
i = 1, 2, 3, 

*Until otherwise indicated, equation numbers used for the defining relations will refer now to Reference 3. 
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aq, & 

By Equation 5.36, 

SO that, for i = 1, 2, 3, 

n-1 

aA2- = - aqi - 8a i  A, e (1 - e')-' + (1  -
p-'{& (:) n(;) Pn(:)Rn [( l- e2)'/,] 

n = l  

By Equations 5.61, 5.50, and 5.53, 

where Dn is computed as follows: 

(n an even integer), and 

(n an odd integer). 
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Then, for i =  1, 2, 3, 

m 


[ (1 -eZ) ' /2 ]n+2DnP~+2[(1-eZ)- ' /2]  

. 
- 2 (n + 2 )  [(l - e2)'/2]n+1Dn Pn+, [(I - e2)-'/z]]$ 

n=O 

where aDn/aqi is computed as follows. If n is an even integer, then 

If n is an odd integer, then 

By Equation 5.37, 



8 
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By Equation 5.38, 

3A,, = 1 ( l - e 2 ) 1 / 2 p - 3 e 2[(3b:-b:) - 9 b , b $ p - l  + q b ; ~ - ~ ( 6 + e ’ ) ]  * 

Thus, for i = 1, 2, 3, 

aA’2dqi - - A22 [ P - l g  + S Z i  e (1 -e2 ) - l ]  + + p - 3 e 2  ( l -e2)’ /2  

3 ab2 
+ [Ip-’ b; (6 + e‘) - 9p-’ b, b, - b2] q} 

By Equation 5.62, 

3 
= (1 - e 2 ) 1 / 2 ~ - 3e[2+b1p-l  (31 e 2 )  - p-2 (ib; + ,2 )  ( 4 +  se2)] . 
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- -  

3 

3 

Thus, for i = 1, 2, 3, 

+ 2p-' (4+3ez ) ( ;bz+c2) ]  % + (3+ 3 ez)  aqiab1 

By the corrected version of Equation 5.63, 

= (1-.2)1/2 p-3 e2 I'T + - b, p - l - ~ - ~ ( - b ~ +1 
2 c2)($ + +e')] 

Thus, for i = 1, 2, 3, 

aA32 ­

aqi 

1
b: + c z ) (3 +  7 e') 

+ S,, ( 1 - e 2 ) 1 / 2 p - 3 e [ ~1 (1+3b lp -1 ) -p -2 ($b :+c2)  ( 3 + e z ) ]  * 

By the corrected yersion of Equation 5.64, 

A,, = 1 (1-e2) ' /2p-4  e3 

Thus, for i = 1, 2, 3, 

dq, = - 3 ~ ~ ~ p - 1aA33 % + 1 (1-e2)1/2p-4e3 

1 ab1 
4 ai b, %} + f F , ,+ - - - p ­

-p- ' (+b;+c2)]  ­

b: + c 2 )  - + ~ - ~ b , ]% 

p-4 e2 [3(1 -e2)1 /2  
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By Equation 5.65, 

Thus, for i = 1, 2, 3, 

+ x 
1 s,, e3p-5 [+( l - e 2 ) - ' / 2 e Z - (1 - e2)1/2] (+ b: + c2)  -
By Equation 47,* Q = 4- . Thus, for i = 1, 2, 3, 

aQ - Q-' (P e + 
aqi S,,) a 

From Equation 102.1, 5 = P(1 - S ) - '  , so that, for i = 1, 2, 3, 

From Equations 147.1 and 147.2, 

1
h, = 2 (1 + C ,  -CZ)-'I2 and h, = 21 

(1-C,  - C 2 ) - ' 1 2  . 

Thus, for i = 1, 2, 3, 

and 

From Equations 100.1 and 100.2, e2 = Q(1 -P)- '  and e 3  = Q(1 +P)- '  . 

*Until otherwise indicated, equation numbers will now refer to Reference 7. 
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3 

and 

From Equation 131.2, e '  = ae(a +b,)-' , SO that, for i = 1, 2, 3, 

d e '  +..;)I d b l  
*aqi = ( a + b l ) - '  S l i  e + S Z i  a - e '  (S l i  

From Equation 149.1, a3 = (sgn a 3 )a, (1- SU-') 1'2 , where sgn a3 E a3/l a3 1 is +1 for a direct 
orbit and -1 for a retrograde orbit. Then, for i = 1, 2, 3, 

da3 - sgn a3 [(I -su- ') ' /2 da + 1 a, u-1 (1- su-1)-1/2 su-1* - 6 
dq,- ( dq, si)] 

By Equation 76, neglecting terms of fourth order, 

3 3= 
B,' 31 Qz + Pz - 7 C, PQz + ij C, Pz Qz + 

3 
(4C,+ X;) Q4 

- %  15 175
3 2  C1 C2 PQ4 + 256 ( X ; +  5C:C,)Q6 + 2048 C;Q8 

Thus, for i = 1, 2, 3, 
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- -  ac1 

By Equation 65, neglecting terms of fifth order, 

1 3 1 1 9 9 
B, = 1 - 2  C , P  + ( g  C: t 3 C2)(Pz  t 2 Q 2 )  + aC t Q 4  - g ClC2pQ2 

15 45 25  105 
- 2 C : p Q ’  + m 8 C , 2 C Z Q 4  +=C:Q6 + 1 0 2 4 C : Q ~  

9+ - C 2 p z Q 2  - - C128 i C2pQ4 t - C:8 2 
225 z ::4 C: C: Q6 + (gr Q8 . 

Thus, for i = 1, 2, 3, 

ap aQ 
+ 

8% - - (P a9, + C l  a)+ (iCl’ f C,) (2. a9, + Q 6)(P2 + $ Qz)(+ C, dq, + 2 aqi
aqi 

By the corrected version of Equation 95, neglecting terms of fifth order, 

1 3 15 3 1 3 
B3 = - z C z  - g C :  - ( ~ C : + ~ C : C 2 + g C ~ ) ( l + n Q ’ )  -jjC:Pz 

5 3 35 
- (EC:C:+ m C ; ) ( l t  2 

1 
Qz t 8 Q4) - 128 C:(l+ 9 

1 
Q2 + 8 

3 
Q4 + 

5 
Q6) 

3 15 3 
+ (;c,J+aclc2)P + m c l C z ‘ ( P t 2 F Q Z )  ­

19 



Thus, for i = 1, 2, 3, 

By the corrected version of Equations 116.4, 
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and 

By Equations 122.1 and 122.2, 

mu, = ( - 2 ~ , ) l / ~( a + b l  + A ,  + c 2 A z B 1 ' B ; ' ) - '  , 

and 

22m2 = a 2 u- 1 / 2 A  2 B - '  ( a + b l  + A ,  +c2A2B, 'B; ' ) - '  . 

Thus, for i = 1, 2, 3, 

and 

a ab, dA,3 (mu2)  = - mu2{(a+b,  + A ,  + C ~ A ~ B , ' B ; ~ ) - '  [S,, + aqi + dq, +c2B;' 

The following time-independent partial derivatives are used only when the differential cor­
rection includes periodic terms through the second order. 

By Equations 5.32, 5.33, 5.39, and 5.40 of Reference 3, 
3
= 

A,, 7 ( 1  - e'),/' p-3 b: e ( b 2  - 2b, p )  , 

3
A,, = (1 - e 2 ) 1 / 2 p - 3b: e 2  , 

1
= 
A2 3 8 ( 1 - e z, p-' b 2  e 3  (b: p- ' - b,) , 
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- - 

and 

3
A,, = 256 (1 -e2)1/2p-5 b: e4 . 

Thus, for i = 1, 2, 3, 

3% 1 
- = - A,, (3p-1 a9, + S z i  [ e ( l - eaqi ap 

3 ab1- 2  ( l - e 2 ) 1 / 2 p - 3 b Z e  + b , p q  + 2 ( b l p - b : ) z ]  3 

t 1 S Z i  ~ - ~ b : e ~ ( b : p - l - b ~ )[3(1-eZ)'/'- (1-e2)- ' /2e2]  , 

and 

- ab,dq, - A,, (4b;' dq, - 5p-' z)+ & F Z i  p-5 b: e3  [4(1 -e2) l / ,  - (1- e,] 

By the corrected versions of Equations 116.3 and 116.4 of Reference 7, 

B,, = 116 Cl c, Q3 ' 
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and 

and 

TIME-VARYING PARTIAL DERIVATIVES IN THE DIFFERENTIAL CORRECTION 

We shall continue the use of the generalized notation introduced in the preceding section, 
whereby we let q i ( i  = 1, 2, 3) refer to the orbital elements a, e, and S, respectively. The 
time-dependent parameters will involve, additionally, the orbital elements ,B, , ,B2,and p3, which we 
shall represent as pi ( i  = 1, 2, 3) in the generalized form of the partial derivatives. 

By combining Equations 121.1* and 123.1, 

Ms = 2TNl ( t + , B l - c 2 ~ 2 a ; 1 B ~ B ; 1 )  . 
Thus, for i = 1, 2, 3, 

*All equation numbers used in specifying the defining relationship for a given variable will henceforth refer to Reference 7. 
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Also, 


and 

In what follows, whenever a partial derivative with respect to P, is zero, it will not be given. 

By combining Equations 121.2 and 123.2, 

A1so, 

and 

By Equation 131.1, letting & = Ms +E, gives 

E - e '  sin& = M~ . 
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2 

I Thus, for i = 1, 2, 3, 

a &aqi = ( l - e ' c o s E ) - '  

Also, for i = 1, 2, 

a &  a M~­api - ( I  - e '  cos &)-I abi . 

By the anomaly connections given in Equations 132, taken to zeroth order, 

= COS v '  (cos E - e )  ( 1  - e cos & ) - I  , 

and 

s i n  v '  = (1- e') I/' (1- ecos & ) - I  s i n  & , 

where 

Then, for i = 1, 2, 3, 

Also, for i = 1, 2, 

By Equation 133, 

Y o  = a2 (-2a1)-1/2 u-l/'A B - '  
2 2 v o .  

Thus, for i = 1, 2, 3, 
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- -  

Also, for i = 1, 2, 

By Equation 136.2, 

M, = - (a t b , ) - '  [(A, t c2A, B,' B i l )  vo + c2a;' (-2a,) u1l2B,, s i n  2(Ys +Yo)] . 

Thus, for i = 1, 2, 3, 

+ 1 u,-' B,, dq, - a i 1  B,, x)d a ,  d a 2  + 2c2 a;' ( - 2 c ~ , ) ' / ~ul', B,, cos 2(Ys +Yo)(: i- $)} 

Also, for i = 1, 2, 

dM1 dv0 
api = 

- (a + b,)- '  t c2A, B,' B;') + 2c2 a;' ( - 2 ~ ~ )'I2 u1l2B,, cos 2(Ys t Yo) 

By Equation 137,neglecting terms of third order, 

1
E,  = ( l - e ' c ~ s & ) - ~ M ,- ~ e ' ( 1 - e ' ~ o s & ) - ~ M ~ s i n &  

Thus, for i = 1, 2, 3, 

dE,  -
hi ( 1- e ' COS &)-

Also, for i = 1, 2, 

3 
- M, e '  (1 - e '  cos &)-, -il[sin & +  T1 

M, ( 1  - e '  cos &)- 'cos & - 7 M ,  e '  (1 - e '  cos &)-, s i n  

26 
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By the anomaly connections, taken to first order, 

c o s v "  = [cos (&+E, )  -e] [ l - e c o s  (&+El) ] - '  , 

and 

s i n v "  = ( 1 - e 2 ) l l 2  [1-ecos (&+E, ) ] - ' s in  (&+E1)  , 

where 

v1 -- - = v" - ( M s  + v o )  . 

Then, for i = 1, 2, 3, 

+ 6,, s i n 2  (&+El(  (sin V I ' ) - '  [1 - ecos ( & t E , ) ] - 2  -av' ­aq,  

Also, for 	i = 1, 2, 

2 = ( 1 - e , )  s i n  ( & + E , )  ( s i n v " ) - '  [ l - e c o s  (&+E,)]-'  (Tf dp, -api -

In the foregoing and in the following, we employ the symbolic notation 

and 

By the corrected version of Equation 139, 

P, = - B;, [.,,s i n  2(yS+ yo) + B,, cos (Y= + Y ~ ) ]  
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, . 

Thus, for i = 1, 2, 3, 

+ s i n  2v '  dqi + ( A 2 l  cos v '  + 2A2,  cos 2v') q] *dA2 2 a v i  

Also, for i = 1, 2, 

+ a 2  ( - 2 ~ ~ ) - ' / ~ u - ~ / ~ B ; ~  
+ 2 A z 2 c o s 2 v ' )  

a v i  -

The following time-dependent partial derivatives are used only when the differential correc­
tion includes periodic terms through the second order. 

By Equation 143.2, 

M, = - (a + b 1 ) - l  ( A , v , + A l l s i n v '  + A 1 2 s i n 2 v '  
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Thus, for i = 1, 2, 3, 

+ ( A l l c o s v ' + 2 A 1 2 c ~ ~ 2 v ' )- +cZa ;1 ( -2a1)1 /2u1 /2  ( + . - I - d U  

a qi aqi 

1 - Ja1 d a  

aqi B,' Yl+ B l l  cos (Ys +Yo) +2B1 ,Yl  COS 2(Ys +Yo) 

a v '  

+ 4 B l 2 Y 1 s i n 2 ( Y s + Y O )+ 3 B 1 3  s i n 3 ( Y s  +Yo)- 4 B 1 4 c ~ s 4 ( Y s + ~ 0 ) ](2+%)I} 
Also, for i = 1, 2, 

_ _ - a v idM,

dpi - -(.+ b 1 ) - '  {Al 2 + ( A l l  c o s ~ '+ 2A1, COS 2 ~ ' )ap. 


d'Y1+ c 2  a;' ( - 2 a l ) 1 / 2 ~ 1 / 2  + 2B1, cos 2(Ys +Yo! dp,- [Bll s i n  (Y, +Yo)  

+ 4 B, ,8, s i n  2 (Y, + YO) + 3 Bl 

By Equation 143.1; 

E, = [1- e '  C O S ( & + E , ) ] - ~ M ,  . 

Thus, for i = 1, 2, 3, 
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- -  

Also, for i = 1, 2, 

Since E = + E ,  +E,, then, for  i = 1, 2, 3, 

Also, for i = 1, 2, 

a E  -d &  dEi dE, 
abi - dp, 'bp, 'ap, ' 

By the anomaly connections, taken to second order (where we choose the notation v rather 
than v "'), 

c o s v  = ( c o s E - e )  ( l - e c o s E ) - l  , 

and 


s i n v  = ( l - e c o s E ) - ' s i n E  , 

where 

v 2  = - = v - (Ms + v 0  + v l )  . 

Then, for i = 1, 2, 3, 

aqi = [(I-el) s i n E a q i  + S Z i s i n 2 E1( s i n v ) - ' ( 1 - e c o s E ) - 2  - (zt$)dv 2 dE 

Also, for i = 1, 2, 

dv2 
a ~ ,- (1-e2)  s i n E ( s i n ~ ) - ' ( l - e c o s E ) - ~  


Since v = v '  + v l  + v ,  ,then, for i = 1, 2, 3, 
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Also, for i = 1, 2, 

a v  - a v '  a v l  a v z  q - dpi+api+T-

By the corrected version of Equation 145, 

Y, = - B i l  [-B,, Yls in  (Y, +Yo) + 2B,,Y1 cos 2(Y, + Y o )  +B,,  cos 3 ( Y s  + Y o )  

+ 2 A 2 , v 1 c o s  2 ~ ' + A , ~ s i n 3 v ' + A ~ , s i n 4 v ' ). 
Thus, for i = 1, 2, 3, 

- (A, v s in  v '  + 4 A,, v1 s i n  2v ' - 3 A,, cos 3v '  - 4 A,, cos 4v') a9,"'I 
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Is 

Also, for i = 1, 2, 

+ 4B,,  Ylsin 2 ( I s  + Yo) + 3B,,  sin 3 ( Y s  +Yo) - 4 B , ,  cos 4 ( I s  + Yo)] (2+ ?)} 
+ a 2  ( A , 1 ~ o s v ' + 2 A z z ~ ~ ~ 2 v ' )-av1 

api 

Since I= + Y o +I, f Y, , then for i = 1, 2, 3, 

Also, for i = 1, 2, 

This concludes the evaluation of the partial derivatives of the uniformizing variables E, v , 
and Y when the computation is followed through terms of the second order. If, however, second-
order precision is not required, then the partial derivatives of M, ,E*, v,, and I,may be omitted, 
and the foregoing partial derivatives of the uniformizing variables reduce to 

and 

a\ys * - - avo alu, 
+-t! * aq, - aq,  aqi aqi  

The partial derivatives of E, v,  and Y with respect to pi (i = 1, 2) a re  similarly reduced. 
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- -  

- 

We now continue with the necessary equations preparatory to determining the partial deriva­
tives of the inertial coordinates X, Y, and Z .  

By special cases of Equations 104 with Y ='If*(1/2hT9 

and 

sin^; = -(l-e:) 
1/2 

( 1 + e 3 s i n ~ ) - 1 c o s ~. 

Thus, for i = 1, 2, 3, 

aE,' ary - 1/2
aqi = ( 1 - e 2 s i n y ) - '  1 - e : )  aqi  (I-e:) 

and 

Also, for i = 1, 2, 

aE,' 1/2 as ,api = ( 1 - e Z s i n ~ ) - '(1 -e ; )  abi 

and 

dE,' ap,ab, - (I t e 3  s i n Y ) - '  (1 -e:) 
1/2 * 

By Equations 114.1 and 114.2, 

1 
xo - (1 - 25)-1/2E; + 2 ( 1  + 25)-1/zE3' ' 
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Also, for i = 1, 2, 

and 


By Equation 150, 

4 = p, - C ~ a 3( - 2 a 1 ) - 1 / 2  ( ~ , v + ~ , ~ ~ i n v + ~ , ~ s i n 2 v t ~ , ~ s i n 3 v + ~ ~ ~ s i n 4 v )  

t a 3 a 2 - 1 ~ 1 / 2{l-S)- l / ’  [ (h l+h2)  x o f  (h l -h2 )  xl] 

3 3 
+ 	B3 Y - - C  1 C2 Q c o s Y4 

Thus, for i = 1, 2, 3, 

d a  
+ a , ( - 2 ~ ~ ) - ~ ~ ~ <1 ~ + A , ~ s i n v + A , ~ s i n 2 v(A, 

a A, 2+A, ,  s i n  3v + A,, s i n  4v) - c 2a, ( - 2 ~ , ) - ’ / ~  + s i n  2v 7 
qi 

d A 3 3  dA3, . 
t s i n 3 v a  t s i n 4 v  7 + (A, t A,, cos v t 2A,,cos 2v + 3 A , ,  COS 3v

qi qi  

3 3 
t (hl - h2) xl] t B, Y - 3 C, C, Q cos Y + 32 C:Q2 s i n  
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- -  

Also, for i = 1, 2, 

a4 av 
ap, - - C' a3 ( - 2 ~ ~ ) - ~ '(A3 + A , ,  COS v + 2 A, ,  COS 2 v +  3A3, COS 3~ + 4 A , ,  COS 4") dp, 

and 

Since the spheroidal coordinates are given by 

p = a ( 1 - e c o s ~ )  , 

and 

7) P + Q s i n Y  , 

then 

and 

Also, for i = 1, 2, 

dEa' - a e s i n ~ ma

aP, I 
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Further, for i = 1, 2, 3, 

and, for i = 1, 2, 

The partial derivatives of p and T with respect to P ,  are both zero. 

Finally, the inertial rectangular coordinates are given by 

~ 

x = ) / ( P Z + C 2 )  (1+) c o s +  , 

and 

Thus, for i = 1, 2, 3, 

and 

d Z  - 877 d p  
aq,  P a x  + ~ d q ia 

Also, for i = 1, 2, 
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and 

and 

OBSERVATIONS OF THE RIGHT ASCENSION-DECLINATION TYPE 

The differential coefficients in the form of partial derivatives of the inertial rectangular 
coordinates with respect to the orbital elements are completely general in the sense that they are 
functions only of the mathematical theory of orbital satellite motion. Thus, they are applicable to 
observations of spacecraft position recorded in any format whatsoever. Previously, it was 
assumed that the observational data were recorded as direction cosines with respect to a topocentric 
latitude-longitude-zenith coordinate system. Another format frequently used for recording obser­
vational data is the right ascension-declination type. In this section, we shall discuss the minor 
variations in the equations that arise when this type of data is utilized. 

The coordinate system adopted for  the use of right ascension-declination data is also situated 
at the tracking station on the earth's surface, but its three coordinate axes are parallel to the 
respective axes of the inertial system. Again designating the topocentric 'local'' coordinates by 
the subscript "M", in this case, the z, -axis is parallel to the earth's polar axis, and the $ -Y, 
plane is parallel to the equatorial plane of the earth. The X, -axis extends toward the vernal 
equinox, with the Y , - a x i s  orthogonally to the east to form a right-handed system. 

The observed right ascension a. is measured eastward from the vernal equinox, and the ob­
served declination 6, is measured as positive above, and as negative below, the equatorial plane. 
The corresponding computed values of the right ascension and the declination are given in terms 
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of the local coordinates by 

= arctan (2)1 
aC 


and 

In order to obtain a satellite's local coordinates from its inertial coordinates, the inertial 
coordinates of the observation point at the time of observation, denoted (X,, Y,, Z,), must be 
known. However, no rotations are  necessary to bring the two systems into coincidence in this 
case, since the topocentric and inertial coordinate systems are  parallel. A single translation will 
suffice. Hence, the relationships for the local coordinates of the satellite are simply 

x, = x - x , ,  

Y, = Y - Y , ,  

and 

2, = 2 - z , .  

Notice that the foregoing simplified relationships a re  obtained from those of the direction-cosine­
data case by the artifice of setting $x = 0 and 8, = d 2  in the corresponding equations for X,, 
Y,, and Z, given earlier. 

The first-order Taylor's ser ies  expansion for the equations of condition corresponding to each 
time of observation a re  

4 aa­
a o - a c  = z % b q i  , 

i =  1 

and 
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where q i  ( i  = 1, 2, - ,6) are the orbital elements. Expanding the foregoing partial derivatives by 
the chain rule yields 

and 

From the expressions for uC and s C  in terms of the local coordinates, we find 

and 

where R, = (G2+ Y z -t Z i )  
1/ 2 and rM (?$,‘+Y:) l /2 . 

Since the station coordinates X,, Y,, and Z, are  indepenL2nt of the orbital elements (and 
merely geodesic functions), the following simple relationships apply. 

39 




and 

The differential coefficients, ax/aq,, aY/aq,, and az/aqi (i = 1, 2, - ,6) are precisely those 
that have been evaluated previously in the differential correction scheme. 

REMARKS 

The differential correction process removes inaccuracies of the initial conditions (the nominal 
observations) and accounts for the effects of forces not considered by the analytical orbital theory. 
Such neglected forces may include aerodynamic drag, electromagnetic effects, solar radiation 
pressure, meteoric bombardment, and residual gravitational influences (including those arising 
from lack of spherical symmetry in the satellite, as well as perturbing planetary potentials). This 
is all accomplished by producing a mean set  of orbital elements through an iterated least-squares 
fitting of the first-order Taylor's ser ies  expansion of the conditional equations to numerous ob­
servational values. Generally speaking, the fitting will  improve as greater numbers of observations 
a re  considered and as the time span represented by the observational data is lengthened. However, 
the complexity of the mathematical processes involved in the fitting increases rapidly as additional 
observations a re  admitted. Because of this latter constraint, it is often advisable to perform re­
peated differential corrections at various intervals of time (known as "epochs") rather than at­
tempt to accommodate all of the data in a single iterated fitting. 

The orbital improvement method of differential correction discussed in this paper has been 
programmed, primarily in the FORTRAN language, for use on a large-scale electronic digital 
computer. The analytical nature of the entire procedure assures a very rapid computational 
process. Application of the differential correction (combined with an orbit generator of position 
and velocity components) has been made to both actual observational data of artificial earth sat­
ellites and to aftificially generated "data" for extremum cases, e.g., polar and equatorial orbits. 
The results have proven entirely favorable. Particular experimental applications will be published 
in a later paper. 
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Appendix A 

Functional Dependencies of the Partial Derivatives 

The following tables a re  intended to display the interrelationship of the various parameters 
whose partial derivatives appear in the differential correction. The partial derivative of each 
parameter in the left column is seen to be a function of those, and only those, partial derivatives 
of parameters occurring in the respective line of the right column. There is a certain amount of 
flexibility in the ordering of the partial derivatives occurring in the differential correction, as is 
demonstrated by the functional dependencies illustrated by these tables. 

Note: In Tables A1 and A2, the asterisk indicates partial derivatives of the parameters used 
only if  the differential correction includes periodic terms through the second order. 

Table A1 
Time-independent Partial Derivatives 

(All taken with respect to orbital elements a, e, and S . )  

Functional dependence on other 
Partial derivative partial derivatives 

(none) 
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Table A1 (Continued) 

Partial derivative 

A 2  

A3  

A 2  1 

A 2  2 

A 3  1 

2 


A3 3 

A 3 4  

Q 

Functional dependence on other 
partial derivatives 

P 
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Partial derivative 

*B11 


*B13 


*B14 


*B2 3 


**24 


Table A1 (Continued) 

Functional dependence on other 
partial derivatives 

P,b, 

C,, P,Q 

C,,Q 
C,. Q 

C,, C,, Q 

C,, Q 

Table A2 

Time-varying Partial Derivatives (All taken with respect to orbital elements 
a, e ,  s, p,, and p,. Exception: 4 ,  x, and Y are taken with respect to P 3 ,  as well.) 

Partial derivative 

M s  

ys 


E 

v O  


YO 

M l  

E l  

V' 


*E, 

E 

*v2 


Functional dependence on other 
partial derivatives 

V 
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